

The EUMETSAT Satellite Applications Facility for NWP (NWP SAF)

Bill Bell
Bryan Conway and John Eyre
Met Office, UK

JCSDA presentation 17th April 2007

Outline

- o Background / Mission / People
- o Projects:
 - AAPP
 - RTTOV
 - 1D-Var
 - Quickscat Data Processor/SDP
 - Monitoring reports
 - SSMIS_Preprocessor
 - Support to EARS
- o Conclusions

NWPSAF background

- Other SAFs include: ocean & sea ice, climate, ozone and Gras
- NWPSAF delivers software modules for use in DA systems (other SAF's develop products)
- Phases include :
 - 5 year dev phase (1998 2003)
 - 3 year initial operational phase (2003 -2006)
 - continuous dev and operations phase (2007)
- Management : Steering group
- Software development under quality systems (dedicated QA/QC at local level, review process)
- Visiting scientists (to accelerate the development of deliverables / training 1 day -2 years)

The NWP SAF: background

- Satellite Applications Facility for Numerical Weather Prediction (NWP SAF)
 - one of 8 SAFs that form part of the distributed ground segment of EUMETSAT
- Led by the Met Office, in partnership with ECMWF, KNMI and Météo-France
- 75%-funded by EUMETSAT

The NWP SAF: mission

MISSION

 To improve and support the interface between satellite data/products and European activities in global and regional NWP

The NWP SAF: people

- Manager: B.Conway
- Project Team:
 - Met Office: S.English, R.Saunders, D.Offiler, N.Atkinson, W.Bell, J.Cameron, B.Candy, A.Doherty, M.Forsythe, P.Francis, R.Francis, F.Hilton, S.Keogh, U.O'Keeffe, E.Pavelin, P.Rayer, S.Watkin
 - **ECMWF:** T.McNally, P.Bauer, A.Collard, A.Garcia-Mendez, H.Hersbach, G.Kelly, J.-N.Thépaut, G.Van der Grijn
 - Météo-France: P.Brunel, T.Labrot, L.Lavanant, P.Marguinaud, A.Marsouin
 - KNMI: A.Stoffelen, A.Verhoef, J.Vogelezang
- Steering Group: J.Eyre, L.Sarlo, S.Elliott, J.Onvlee, P.Pylkko, F.Rabier, P.Schluessel, A.Simmons
- Visiting scientists: Many!

The NWP SAF: products

At present:

- AAPP ATOVS and AVHRR Pre-processing Package
- RTTOV fast radiative transfer model
 - + model-based profile data sets
- 1D-Var retrieval schemes
- QDP Quikscat Data Processor
- Monitoring reports
- SSMIS pre-processor

Under development:

- Updates to the above
- SDP Scatterometer Data Processor

AAPP

The NWP SAF: AAPP

The NWP SAF: AAPP

The ATOVS and AVHRR Pre-processing Package

- Performs INGEST and PRE-PROCESSING of ATOVS and AVHRR data
 - ATOVS = AMSU-A + HIRS + AMSU-B/MHS
- INGEST
 - Decommutation
 - Navigation
 - Calibration
- PRE-PROCESSING
 - Precipitation and cloud detection for microwave instruments
 - Mapping to common grid (e.g. HIRS fields of view)
 - Cloud analysis on AVHRR pixels within each HIRS fov

AAPP versions 1 to 5

AAPP version 6 – including METOP

RTTOV

The NWP SAF: RTTOV

RTTOV - a fast radiative transfer model

- It is used by NWP centres for several applications (e.g. radiance assimilation, data monitoring, simulated imagery)
- The NWP SAF maintains and distributes recent versions of RTTOV (currently versions 7 & 8)
- The latest version, RTTOV v8, was released in November 2004
- The next version, RTTOV v9, is now under development and will be released in Feb 2007

RTTOV functionality

- Input profiles: temperature and water vapour; optionally, ozone and carbon dioxide also as variable gases
- Computes top-of-atmosphere radiances, brightness temperatures and layer-to-space transmittances for each channel
- **Comprises**: forward, tangent linear, adjoint and K (Jacobian matrix) models, for use in variational assimilation or retrievals
- **Sea-surface emissivity**: computed internally (ISEM-6 model for IR, FASTEM for MW) or value provided by user
- Clouds:
 - Single-layer, spectrally-invariant
 - Multi-layer, spectrally-varying: using "wrapper" code, RTTOV_CLD
 - Microwave, with scattering: using "wrapper" code, RTTOV_SCATT
- Fortran-90
- Run under unix or linux; tested on range of platforms
- Run-time: ~ 0.5 ms for 20 HIRS channels for 1 profile on HP workstation

RTTOV – sensors supported

Platforms	Sensor	Channels simulated
TIROS-N	HIRS, MSU,	1-19, 1-4
NOAA-6-18	SSU, AMSU-A	1-3, 1-15
NOAA-2-5	AMSU-B, MHS,	1-5, 1-5,
	AVHRR, VTPR	1-3,1-8
DMSP F-8-15	SSM/I	1-7
DMSP F-16	SSMI(S)	1-24
Meteosat-2-8	MVIRI	2
	SEVIRI	4-11
GOES-8-12	Imager	1-4
	Sounder	1-18
ERS-1/2	ATSR	1-3
ENVISAT	AATSR	1-3
GMS-5, MTSAT	Imager	1-3,1-4
Terra	MODIS,AIRS	1-17, 1-2378
Aqua	AMSU-A, HSB, AMSR	1-15, 1-4,1-14
TRMM	ТМІ	1-9
Coriolis	WindSat	1-10
FY-1, FY-2	MVISR, VISSR	1-3, 1-2

RTTOV-85/87 status

- Number of licence requests = 187
- Number of users provided code ~ 180
- Number of bugs reported since release = 10 for 85 corrected in 87 and 6 for 87 all minor
- Efficient vectorisation of code still being worked on for NEC supercomputer
- Rewritten RTTOV_SCATT code for RTTOV-87
- Participated in AIRS RT comparison (see separate talk)

New coefficient files available

- ■METOP n.b. satellite id=2
 - IASI available for RTTOV-7 and 8
 - HIRS available
 - AMSU-A/MHS available
 - AVHRR available
- MSG-2 SEVIRI available
- GOES-12 sounder available
- MegaTropiques, Saphir and Madras

RTTOV-9 developments

What is included?

- New diverse profile dataset inclusion of more minor gases, more levels
- Inclusion of multiple scattering for cloudy and aerosol radiance calculations
- Linear in tau mean path values
- Zenith angle dependence of path
- Include reflected solar for SWIR
- More active trace gases CO, CH₄, N₂O,
- Further optimisation of predictors
- Improvements to RTTOV_SCATT (new Mie tables)
- Change interface to allow profile input on user levels
- Change interface to avoid need to specify polarisation index

The NWP SAF: 1D-Var schemes

1D-VAR

The NWP SAF: 1D-Var schemes

One-dimensional variational retrieval – 1D-Var

Used for:

- Retrieval of atmospheric/surface variables from radiance measurements
- NWP data assimilation pre-processing and quality control
- Research tool rapid exploration of new data

Variational data assimilation

Minimize:

$$J(x) = \frac{1}{2} (x-x^b)^T B^{-1} (x-x^b) + \frac{1}{2} (y^o-H[x])^T (E+F)^{-1} (y^o-H[x])$$

where x contains the NWP model state

x^b is background estimate of x (short-range forecast)

B is its error covariance,

yo is vector of measurements

H[...] is "observation operator" or "forward model", mapping state x into "measurement space"

E is error covariance of measurements,

F is error covariance of forward model.

$$\nabla_{x}J(x)^{T} = B^{-1}(x-x^{b}) - \nabla_{x}H[x]^{T}(E+F)^{-1}(y^{o}-H[x]) = 0$$

1D-Var: simulated IASI retrieval errors

The NWP SAF: 1D-Var schemes

3 schemes are available:

- "ECMWF"
 - generic harness minimisation scheme with "hooks"
- "Met Office"
 - complete scheme ATOVS, AIRS, IASI
- "SSMIS"
 - complete scheme SSMI, SSMIS, AMSU

The NWP SAF: Scatterometer processors

QDP / SDP

The NWP SAF: Scatterometer processors

- QDP Quikscat Data Processor available NOW
 - Input NOAA Quikscat product in BUFR
 - Pre-processing sorting and spatial averaging
 - Wind retrieval
 - QC rain detection, etc
 - Ambiguity removal
 - Monitoring and output
- SDP Scatterometer Data Processor SOON
 - Generic scatterometer code
 - ERS SCAT, METOP ASCAT, Seawinds (Quikscat, NSCAT)

Scatterometer Data Processor

INPUT

The NWP SAF: Monitoring reports

Monitoring reports

- Observation coverage plots
- Statistics of observed-forecast differences
- Data types:
 - ATOVS, SSMI, AIRS, geo-radiances
 - AMVs
 - Quikscat, ERS-2
 - Ozone: SBUV, Envisat

Example:

AMVs v. 6h forecast

Met Office

ECMWF

10000-

- - MEAN FIT

Meteosat-8 IR 10.8

June 2005

Above 400 hPa

Area: 20S-20N

Meteosat-8 IR 10.8

June 2005

Above 400 hPa

Area: 90S-20S

WINDSPEED

NO. OF OBS: 377984 BIAS: -2.8 STD: 6.8 NO. OF USED ORS: 2622 [1%]

Example:

AMVs v. 6h forecast

Met Office

Example:

MSG 6.3µm water vapour channel

ECMWF

Example of link to another monitoring site:

KNMI Quikscat monitoring

SSMIS Preprocessor

Main functions:

- Remapping
- Averaging
- Reflector emission correction
- Solar intrusion flagging

Code & preprocessed data available

SSMIS Preprocessor: Averaging

Gaussian Convolution (σ = 50 km) Fields of View 1, 15, 30, 45 and 60

- Operational preprocessor uses $\sigma = 50 \text{km}$ (FWHM = 118km)
- NE $\Delta T_{\rm eff}$ ~ 0.03K
- Processing time ~ 1 minute/ orbit

- NEΔT for LAS channels is ~0.3K
 ⇒require averaging to achieve
 NEΔT_{eff} = 0.1K
- Also benefit from improved scale matching?

SSMIS preprocessor: flagging and correction residual biases

SSMIS preprocessor: flagging and correction residual biases

The NWP SAF: support to EARS

Support to EARS

The NWP SAF: support to EARS

NWP SAF support to the EUMETSAT ATOVS Retransmission Service (EARS):

- Development and maintenance of AAPP
- Real-time data monitoring:
 - for each EARS reception site
 - checks consistency with global ATOVS data
 - checks consistency with locally-received ATOVS data (Lannion)

The NWP SAF: support to EARS

Conclusions

The NWP SAF: concluding remarks

- Collaboration between 4 European NWP centres, with support from EUMETSAT, has permitted the development, delivery and support of:
 - software modules for satellite data processing and assimilation,
 - data monitoring services,

to a large and growing user community.

- Over the next few years, the NWP SAF plans to contribute to the exploitation of data from new instruments.
- Collaboration with the international community will be needed to ensure we cover all the new instruments, in a timely manner, without unnecessary duplication.

The NWP SAF: further information

For information, visit:

http://www.metoffice.gov.uk/research/interproj/nwpsaf/index.html

To obtain software, visit:

http://www.metoffice.gov.uk/research/interproj/nwpsaf/request_forms/index.html

Supplementary slides

AAPP - Recent updates

Updates to AAPP v4.0

- Update 4.4, 31/8/04:
 - Linux compatibility (also Windows via MS Services For Unix)
 - Improved robustness in decommutation
 - Utility to compare output files from different platforms (atovsCompare)
 - Big/little-endian conversions
 - Processing of NOAA-17 to level 1d
 - 1d flag for fewer collocations than expected in re-mapping AMSU-A to HIRS
- Update 4.5, 03/02/05:
 - Updated AMSU-B calibration parameters file (gross limits)

AAPP version 5

- Includes the following enhancements:
 - NOAA-N capability (including MHS)
 - New HIRS calibration method (based on NOAA v4)
 - Updated navigation ability to use 2-line elements
 - Calibration allow for moon contamination in AMSU-B/MHS
 - Precipitation tests added NWC-SAF scattering index (Bennartz) to AMSU-B level 1d
 - Use of instrument-specific scan characteristics, and removal of many hard-coded parameters
- Released to users on 18 July 2005, following validation with NOAA-18 data (~2 months after launch)

The NWP SAF: 1D-Var schemes

Assimilating observations into a NWP model

OR

Retrieving atmospheric variables using a forecast profile as background (first guess)

The NWP SAF: monitoring EARS v global radiances

Example: ATOVS - Tromso

